Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)
-
Год:2014
-
Название:Наша математическая вселенная. В поисках фундаментальной природы реальности
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:Александр Сергеев
-
Издательство:Corpus (АСТ)
-
Страниц:244
-
ISBN:978-5-17-085475-2
-
Рейтинг:
-
Ваша оценка:
Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги
В гл. 10 мы показали, что его первым шагом стало бы вычисление того, какими симметриями обладает математическая структура. Свойства симметрии относятся к числу тех немногих типов свойств, которыми обладает любая математическая структура, и они могут для обитателей данной структуры проявляться как физические симметрии.
По большому счёту, вопрос о том, что именно наш математик, исследуя произвольную структуру, должен далее вычислить, неясен. Но меня удивляет, что в конкретной математической структуре, которую мы населяем, дальнейшие исследования её симметрий привели поистине к золотой жиле. Эмми Нётер в 1915 году доказала, что каждая непрерывная симметрия нашей математической структуры приводит к так называемому закону сохранения в физике, то есть к тому, что некоторая величина гарантированно остаётся неизменной и возникает постоянство, которое может быть замечено самосознающими наблюдателями и получить у них «багажное» название. Все сохраняющиеся величины, которые мы обсуждали в гл. 7, соответствуют таким симметриям. Например, энергия соответствует симметрии относительно переноса во времени (то есть тому, что законы физики остаются всегда одинаковыми), импульс соответствует симметрии переноса в пространстве (тому, что законы остаются одинаковыми везде), угловой момент соответствует вращательной симметрии (тому, что пустое пространство не имеет выделенного направления «верх»), а электрический заряд соответствует определённой симметрии в квантовой механике. Венгерский физик Юджин Вигнер обнаружил, что эти симметрии также диктуют все квантовые свойства, которыми могут обладать частицы, включая массу и спин. Иными словами, Нётер и Вигнер показали, что, по крайней мере в нашей математической структуре, изучение симметрий открывает, какого рода «материи» могут в ней существовать. Как говорилось в главе 7, некоторые мои коллеги любят в шутку сказать, что частица — это просто «элемент неприводимого представления группы симметрии». Становится ясно, что почти все наши физические законы вытекают из симметрий, а лауреат Нобелевской премии по физике Филип Уоррен Андерсон пошёл ещё дальше, заявив, что «лишь небольшое преувеличение сказать, что физика сводится к изучению симметрии».
Почему симметрии играют такую важную роль в физике? ГМВ отвечает, что физическая реальность обладает свойствами симметрии, поскольку она математическая структура, а математические структуры обладают свойствами симметрии. Тогда более глубокий вопрос о том, почему конкретная структура, в которой мы обитаем, имеет так много симметрий, становится эквивалентным вопросу о том, почему мы оказались в этой конкретной структуре, а не в другой, обладающей меньшей симметрией. Ответ может состоять отчасти в том, что симметрии, по-видимому, скорее правило, чем исключение для математических структур — особенно крупных, находящихся не очень далеко внизу в основном списке (то есть таких, для которых простые алгоритмы определяют отношения большого числа элементов, из-за чего у всех них много общих свойств). Также может сказываться эффект антропной селекции: как отмечал Вигнер, существование наблюдателей, способных замечать закономерности в окружающем их мире, вероятно, требует симметрий, так что, раз мы являемся наблюдателями, следует ожидать, что мы окажемся в высокосимметричной математической структуре. Представьте себе попытку понять мир, в котором эксперименты никогда не повторяются, поскольку их исход зависит от того, где и когда вы их выполняете. Если бы брошенный камень иногда падал вниз, иногда летел вверх, да и всё остальное вело бы себя внешне произвольным образом, не было бы смысла в развитии мозга.





