Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)
-
Год:2014
-
Название:Наша математическая вселенная. В поисках фундаментальной природы реальности
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:Александр Сергеев
-
Издательство:Corpus (АСТ)
-
Страниц:244
-
ISBN:978-5-17-085475-2
-
Рейтинг:
-
Ваша оценка:
Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги
Выше мы рассмотрели тесную взаимосвязь математических структур с вычислениями, при которой первые определяются вторыми. С другой стороны, вычисления — не более чем частный случай математических структур. Так, информационное содержание (состояние памяти) цифрового компьютера — эта строка битов (скажем, 1 001 011 100 111 001…) большой, но конечной длины, эквивалентная некоему большому, но конечному целому числу n, записанному в двоичной системе. Обработка информации в компьютере — это детерминистическое правило изменения каждого состояния памяти на другое (применяемое снова и снова). Так что математически это просто отображающая целые числа на себя функция f, которая многократно применяется: n f(n) f(f(n)) … Иными словами, даже самая сложная компьютерная модель — это не более чем частный случай математической структуры, а значит, она включается в мультиверс IV уровня.
На рис. 12.6 показано, как вычисления и математические структуры связаны не только друг с другом, но также с формальными системами — абстрактными символическими системами аксиом и правил вывода, которые математики применяют для доказательства теорем о математических структурах. Прямоугольники на рис. 12.1 соответствуют таким формальным системам. Если формальная система описывает математическую структуру, то говорят, что последняя является моделью первой. Более того, вычисления могут порождать теоремы в формальных системах (для некоторых классов формальных систем существуют алгоритмы, способные вычислить все теоремы).
На рис. 12.6 также показано, что во всех трёх вершинах треугольника потенциально существуют проблемы: отношения в математических структурах могут быть неопределёнными, формальные системы могут содержать неразрешимые утверждения, а вычисления могут не останавливаться после конечного количества шагов. Отношения между тремя вершинами и соответствующими трудностями обозначены шестью стрелками, смысл которых я подробно объяснил в статье 2007 года о математической Вселенной. Поскольку разные стрелки изучаются специалистами из разных областей — от математической логики до информатики, — исследование этого треугольника как целого является междисциплинарным. Я думаю, оно заслуживает большего внимания.
Рис. 12.6. Стрелки обозначают тесные взаимосвязи между математическими структурами, формальными системами и вычислениями. Вопросительный знак указывает на то, что всё это аспекты одной трансцендентной структуры, природу которой мы до конца пока не понимаем.
В центре треугольника я поставил вопросительный знак. Он указывает на предположение, что три вершины (математические структуры, формальные системы и вычисления) являются просто аспектами одной лежащей в основе трансцендентной структуры, природу которой мы пока понимаем не до конца. Эта структура — возможно, ограниченная до определённой (разрешимой, останавливающейся) части, как в ГВВ, существует где-то в свободном от «багажа» виде и являет собой всю полноту математического и физического существования.
Следствия существования мультиверса IV уровня
В этой главе мы смогли показать, что фундаментальная физическая реальность является мультиверсом IV уровня, и начали разбирать его математические свойства. Теперь займёмся его физическими свойствами, а также следствиями, вытекающими из самой идеи мультиверса IV уровня.
Симметрии и не только
Если взять конкретную математическую структуру из нашего списка, служащего атласом мультиверса IV уровня, то как вывести физические свойства, которые будут восприниматься находящимся в ней самосознающим наблюдателем? Иными словами, каким образом бесконечно разумный математик, начав с математического определения структуры, выводит физические свойства, которые мы в гл. 9 назвали «консенсусной реальностью»?[85]





