Игра в имитацию - Эндрю Ходжес (2015)
-
Год:2015
-
Название:Игра в имитацию
-
Автор:
-
Жанр:
-
Оригинал:Английский
-
Язык:Русский
-
Перевел:Виктория Тен, Г. Веселов, Михаил Витебский, О. Костерева
-
Издательство:АСТ
-
Страниц:312
-
ISBN:978-5-17-089741-4
-
Рейтинг:
-
Ваша оценка:
Игра в имитацию - Эндрю Ходжес читать онлайн бесплатно полную версию книги
Первая попытка ответить на этот вопрос была предпринята в работе Готлоба Фреге «Основы арифметики: логически-математическое исследование о понятии числа», опубликованной в 1884 году. В ней ученый выразил свой логистический взгляд на математику, по которому законы арифметики выводились при помощи логический связей между объектами окружающего мира, а ее последовательность подтверждалась миром реальных вещей. С точки зрения Фреге, «1» обозначало нечто конкретное, а именно предмет окружающего мира: «один стол», «один стул», «одна пивная кружка». Таким образом, утверждение «2 + 2 = 4» должно было соответствовать тому факту, что, если добавить два предмета к уже имеющимся двум предметам, в результате и в совокупности мы получим четыре предмета. Цель работы Фреге заключалась в том, чтобы рассмотреть отвлечённо такие понятия, как «любой», «предмет», «другой» и так далее, и затем на их основе построить теорию, по которой законы арифметики могли быть выведены из наиболее простых идей существования.
Однако, в этой работе Фреге опередил Бертран Рассел, который занимался изучением похожей теории. В своей теории типов ему удалось конкретизировать идеи Фреге, сформулировав понятие «класса» как логическое понятие. Суть его теории состояла в том, что некоторое множество, содержащее в себе один лишь предмет, могло быть определено тем свойством, что при извлечении этого предмета из множества, предмет будет тем же самым. Такая идея позволяла описывать исключительность с точки зрения единообразия или равенства. Но тогда и равенство могло определяться с точки зрения удовлетворения того же самого ряда утверждений. Таким образом, понятие числа и аксиомы арифметики, как оказалось, могли быть выведены из самых простых идей об объектах, утверждениях и пропозициях.
К сожалению, на деле все обстояло не так просто. Рассел стремился определить множество с одним элементом при помощи идеи равенства, не используя при этом понятие вычисления. Тогда он смог бы определить число «один», как «множество всех множеств с одним элементом». Но уже в 1901 году Рассел заметил логические противоречия, возникающие при попытке использовать понятие «множества всех множеств».
Сложность заключалась в возможном возникновении ссылающихся на самих себя, внутренне противоречивых утверждений, например: «Это утверждение ложно». Подобная проблема возникла в теории множеств, которую разработал немецкий математик Георг Кантор. Рассел заметил, что аналогичный парадоксу Кантора возникает и в его теории типов. Тогда он выделил два вида «классов»: множества, которые не содержат сами себя в качестве подмножества, и множества, которые содержат сами себя в качестве подмножества. С точки зрения Рассела, «в обычном понимании класс не является членом самого себя; человечество, например, не является человеком». Но множество абстрактных понятий или множество всех множеств могут иметь подобное свойство. Получившемуся парадоксу Рассел попытался дать следующее объяснение:
Предположим, что существует множество всех собственных множеств, которые не содержат себя в качестве подмножества. Представим одно из таких множеств: является ли оно подмножеством самого себя? В случае, если оно является подмножеством самого себя, значит, оно относится к тем множествам, которые не содержат себя в качестве подмножества, то есть оно не является подмножеством себя. В случае, если оно не является подмножеством самого себя, значит, оно относится к тем множествам, которые не содержат себя в качестве подмножества, то есть оно является подмножеством себя. Таким образом, в каждом из двух предположений — что оно является и не является подмножеством самого себя — возникает противоречие относительно другого предположения. В этом и состоит суть парадокса.