Игра в имитацию - Эндрю Ходжес (2015)
-
Год:2015
-
Название:Игра в имитацию
-
Автор:
-
Жанр:
-
Оригинал:Английский
-
Язык:Русский
-
Перевел:Виктория Тен, Г. Веселов, Михаил Витебский, О. Костерева
-
Издательство:АСТ
-
Страниц:312
-
ISBN:978-5-17-089741-4
-
Рейтинг:
-
Ваша оценка:
Игра в имитацию - Эндрю Ходжес читать онлайн бесплатно полную версию книги
Вернувшись в Кембриджский университет на целых три месяца в мягкий климат родной Англии, Алан принялся за работу сразу над тремя проектами. Сначала ему нужно было внести некоторые изменения в статью «О вычислимых числах». Из Цюриха Бернайс прислал письмо, в котором довольно неприятным образом указал на несколько ошибок в его доказательстве, что проблема разрешимости Гильберта в своей точной формулировке не имеет решения, поэтому Алану пришлось писать примечание с исправлением для журнала Лондонского математического общества Proceedings. Он также оформил свое доказательство того, что его понятие «вычислимости» в точности соответствовало понятию Чёрча о «практической вычислимости». К тому моменту появилось и третье определение схожей идеи, известное под названием «рекурсивная функция». Такая функция позволяла определить математическую функцию в рамках более простых функций. Эта идея впервые появилась в работе Гёделя, и позже Клини развил ее в своем исследовании. Существование рекурсивной функции подразумевалось в доказательстве Гёделя неполноты арифметики. Когда Гэдель показал, что понятие доказательства с точки зрения шахматной игры является понятием таким же арифметическим, как нахождение наибольшего общего делителя, по существу он говорил о том, что эта работа может быть выполнена при помощи «определенного метода». Позже эта идея привела к понятию «рекурсивной функции». И как теперь оказалось, общая рекурсивная функция была точным эквивалентом вычислимой функции. Таким образом, лямбда-исчисление Чёрча и метод определения арифметических функций Гёделя оказались эквивалентны машине Тьюринга. Сам Гёдель позже признал устройство машины Тьюринга как наиболее удовлетворительное выражение «определенного метода». В то время совершенно удивительным и поразительным обстоятельством казалось то, что три независимых подхода к идее «определенного метода» сошлись на одном общем ее представлении.
Второй проект касался «новых идей в области логики» для его докторской диссертации. Основная идея работы состояла в том, чтобы понять, существует ли способ каким-либо образом ослабить силу результата теоремы Гёделя, согласно которому в арифметике всегда будут существовать верные, но недоказуемые утверждения. Этот вопрос не был новым, поскольку Россер, который теперь состоял при Корнеллском университете, опубликовал статью, в которой исследовал эту тему, в марте 1937 года. Тем не менее Алан планировал решить вопрос в более общем виде.
Его третий проект был наиболее амбициозным, поскольку он решил испытать свои силы и попытаться решить центральную проблему в теории чисел. Он уже проявлял интерес к этой теме, поскольку приобрел книгу Ингама с исследованиями в области теории чисел еще в далеком 1933 году. Однако, когда Ингам в 1937 году выслал ему несколько последних работ на эту тему, он решил самому попробовать решить проблему. Проект казался амбициозным главным образом потому, что над темой, которую он выбрал предметом своего исследования, безуспешно и многие годы бились одни из величайших умов в области чистой математики.
Хотя простые числа использовались повсеместно в математике, довольно легко можно было сформулировать всего в нескольких словах такие вопросы, которые привели бы любого ученого в замешательство. Один из таких вопросов был решен довольно скоро. Евклиду удалось доказать существование бесконечного множества простых чисел, и хотя в 1937 году число 2127 — 1 = 170141183460469231731687303715884105727 было самым большим известным простым числом, так же было известно, что их ряд продолжался бесконечно. Другим свойством простых чисел, о котором было нетрудно догадаться, но которое было трудно доказать, стало особое распределение простых чисел: сначала почти каждое число является простым, но уже ближе к 100 простым будет только одно из четырех, ближе 1000 — одно из семи, а ближе к 10 000 000 000 — только одно из двадцати трех. Тому должна была быть какая-то причина.