Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)
-
Год:2014
-
Название:Наша математическая вселенная. В поисках фундаментальной природы реальности
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:Александр Сергеев
-
Издательство:Corpus (АСТ)
-
Страниц:244
-
ISBN:978-5-17-085475-2
-
Рейтинг:
-
Ваша оценка:
Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги
Среднее изображение на рис. 10.8 описывает другую, более интересную математическую структуру с восемью элементами, которая включает их отношения. Одно из описаний этой структуры состоит в том, что её элементы — это вершины куба, а отношения задают, какие вершины соединены между собой рёбрами. Помните, однако, что не следует путать описание с тем, что описывается: математическая структура не имеет собственных свойств (например размера, цвета, текстуры или состава) — она содержит только восемь связанных отношениями сущностей, которые вы можете по желанию интерпретировать как вершины куба. На самом деле в правой части рис. 10.8 представлено эквивалентное определение этой математической структуры без ссылок на геометрические понятия вроде «куб», «вершина» или «ребро».
Но если сущности внутри этой структуры не имеют собственных свойств, то могут ли иметься такие свойства у самой структуры (помимо того, что в ней восемь элементов)? На самом деле, да, они есть — это симметрии. В физике нечто называют обладающим симметрией, если оно остаётся неизменным, когда вы определённым образом преобразуете его. Например, мы говорим, что ваше лицо обладает зеркальной симметрией, если оно кажется неизменным, будучи отражённым слева направо. В некотором смысле математическая структура на рис. 10.8 (в середине) обладает зеркальной симметрией: если вы поменяете местами элементы 1 и 2, 3 и 4, 5 и 6, 7 и 8, то схема отношений будет выглядеть точно так же, как прежде. Она также обладает некоторыми вращательными симметриями, соответствующими повороту нарисованного куба либо на 90° вокруг оси, проходящей через центры противоположных граней, либо на 120° вокруг оси, проходящей через противоположные вершины, либо на 180° вокруг оси, проходящей через середины противоположных рёбер. Хотя интуитивно мы считаем, что симметрии связаны с геометрией, те же симметрии можно обнаружить, возясь с таблицей в правой части рис. 10.8: если определённым образом перенумеровать восемь элементов, а затем пересортировать таблицу в порядке возрастания номеров строк и столбцов, получится точно такая же таблица, какая была в начале.
Знаменитый больной вопрос философии — проблема бесконечного регресса. Например, если мы говорим, что свойства алмаза объясняются свойствами и расположением в нём атомов углерода, свойства атомов углерода — свойствами и расположением в них протонов, нейтронов и электронов, а свойства протонов — свойствами и расположением в них кварков, кажется, что мы обречены вечно пытаться объяснять свойства этих составных частей. Гипотеза математической Вселенной предлагает радикальное решение этой проблемы: на нижнем уровне реальность — это математическая структура, так что её части вообще не имеют внутренних свойств! Иными словами, из гипотезы математической Вселенной вытекает, что мы живём в реляционной реальности, то есть свойства окружающего мира обусловлены не свойствами первичных «строительных блоков», из которых он сложён, а отношениями между «блоками».[68] Внешняя физическая реальность является, таким образом, чем-то большим, нежели суммой её частей. Она может иметь много интересных свойств, хотя её части вообще не имеют собственных свойств.
Табл. 10.2. Ключевые понятия, связанные с идеей математической Вселенной.
Математические структуры на рис. 10.7 и 10.8 относятся к семейству математических структур, называемых графами: это абстрактные элементы, часть которых попарно связана. Можно применить другие графы для описания математических структур, соответствующих додекаэдру и прочим платоновым телам на рис. 7.2. Ещё один пример графа — сеть «френдов» в «Фейсбуке». Здесь элементы соответствуют всем пользователям «Фейсбука», и два пользователя связаны, если между ними установлено отношение дружбы. Графы представляют собой лишь одно из множества семейств математических структур. Мы подробнее обсудим математические структуры в гл. 12, а пока разберём ещё несколько примеров.





