Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)
-
Год:2014
-
Название:Наша математическая вселенная. В поисках фундаментальной природы реальности
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:Александр Сергеев
-
Издательство:Corpus (АСТ)
-
Страниц:244
-
ISBN:978-5-17-085475-2
-
Рейтинг:
-
Ваша оценка:
Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги
В шахматах используются абстрактные сущности (фигуры и поля на доске) и отношения между ними. Одно из отношений, которое фигура может иметь с полем, заключается в том, что первая стоит на втором. Другое отношение, которое фигура может иметь к полю, состоит в том, что ей позволено на него переместиться. Две центральные иллюстрации на рис. 10.6, согласно нашему определению, эквивалентны: между трёхмерными и двумерными фигурами и досками существует соответствие, так что любой трёхмерной фигуре, стоящей на определённом поле, соответствует двумерная фигура на соответствующем поле. Аналогично, описание шахматной позиции, выраженное лишь в словах английского языка, эквивалентно описанию, выраженному лишь в словах испанского языка, если имеется словарь, описывающий соответствие между английскими и испанскими словами, и если его применение при переводе описания на испанском даёт описание на английском.
Когда газеты или веб-сайты публикуют шахматные партии, они обычно используют ещё одну эквивалентную форму описания — так называемую алгебраическую шахматную нотацию (рис. 10.6, справа). Здесь фигуры обозначены не предметами или словами, а буквами (слон, например, эквивалентен «С»), а поля представляются буквой, задающей вертикаль, и цифрой, указывающей горизонталь. Поскольку абстрактное описание партии на рис. 10.6 (справа) эквивалентно её описанию в форме видеозаписи игры на физической доске, всё, что есть в последней форме описания, но не имеет соответствия в первой, является «багажом» — от физического существования доски до формы, цвета и названий фигур. Даже особенности алгебраической шахматной нотации выступают «багажом»: когда в шахматы играют компьютеры, они обычно пользуются иными абстрактными описаниями позиций, представляющими собой схемы из нулей и единиц в памяти. Так что остаётся после того, как мы избавляемся от «багажа»? Что именно описывается эквивалентными описаниями? Бессмертная партия, на 100 % очищенная.
«Багаж» и математические структуры
Разобранный случай с абстрактными шахматными фигурами, полями на доске и отношениями между ними — это пример гораздо более общего понятия — математической структуры. Это стандартное понятие в современной математической логике. В гл. 12 я приведу более строгое описание, а пока вполне достаточно неформального определения:
Рис. 10.7. Три эквивалентных описания одной и той же математической структуры, которую математики назвали бы ориентированным графом с четырьмя элементами. Каждое описание содержит некий произвольный «багаж», но структура, которую все они описывают, на 100 % свободна от «багажа»: её четыре сущности не имеют свойств, кроме отношений между ними, а эти отношения не имеют свойств, кроме информации о том, какие элементы они связывают.
Математическая структура — это набор абстрактных сущностей с отношениями между ними.
Рассмотрим несколько примеров. На рис. 10.7 (слева) описываются математические структуры с четырьмя сущностями, связанными между собой отношением нравится. Сущность Филипп представлена изображением с множеством внутренних свойств, таких, например, как цвет волос. Напротив, сущности математических структур совершенно абстрактны, что предполагает отсутствие у них каких бы то ни было внутренних свойств. Это значит, что какие бы символы мы ни использовали для их представления, это будут лишь метки, свойства которых не имеют отношения к делу: во избежание ошибочного приписывания свойств этих символов абстрактным сущностям, обозначением которых они являются, рассмотрим более аскетичное описание, представленное на среднем рисунке. Оно эквивалентно первому, поскольку, если установить соответствие согласно следующему словарю: Филипп = 1, Александр = 2, лыжи = 3, скейтборд = 4, нравится = R, все отношения сохранятся. Так, «Александру нравится скейтборд» превратится в «2 R 4», а такое отношение на среднем рисунке действительно есть.





