Как хороший человек становится негодяем. Эксперименты о механизмах подчинения. Индивид в сетях общества - Стэнли Милгрэм (2017)
-
Год:2017
-
Название:Как хороший человек становится негодяем. Эксперименты о механизмах подчинения. Индивид в сетях общества
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:Анастасия Бродоцкая
-
Издательство:АСТ
-
Страниц:169
-
ISBN:978-5-17-982369-8
-
Рейтинг:
-
Ваша оценка:
Как хороший человек становится негодяем. Эксперименты о механизмах подчинения. Индивид в сетях общества - Стэнли Милгрэм читать онлайн бесплатно полную версию книги
Главный довод, который Бейли приводит в защиту превосходства вероятностных моделей, – это циклическая природа эпидемий во времени. Бейли говорит именно о распространении инфекционной болезни, однако мы можем обобщить его модель на диффузию определенной разновидности поведения – например, восприятие модного поветрия, распространение танцевальной мании (Hecker, 1885), растущую популярность «Битлз», продажи хула-хупов. В своей ранней детерминистской работе Сопер (Soper, 1929) предпринял попытку рассчитать эпидемические циклы. Однако модель Сопера предсказывает затухающие колебания, то есть утверждает, что последующие вспышки эпидемии будут не такими сильными, а в конце концов и вовсе сойдут на нет. Поскольку это противоречит фактам, необходимо было разработать более точную модель, а для этого следовало обратиться к стохастической теории. Бартлетт (Bartlett, 1957) применил для симуляции эпидемического процесса компьютерный метод «Монте-Карло» (метод случайных чисел) и успешно описал циклическую природу реальной эпидемии кори. У его модели была интересная особенность: он определил минимальный размер сообществ, при котором эпидемия еще может вернуться, а если численность сообщества ниже – уже нет. Бартлетт предсказал 200 000 заболевших – и это вполне совпадает с 250 000 по данным врачей.
Еще предстоит проверить, существуют ли правдоподобные социальные аналоги эпидемиологических явлений периодического заражения и критического размера выборки. В связи с этим, пожалуй, будет полезно изучить «волновые» феномены наподобие оваций или вспышек антисемитизма.
Модели размера групп
При изучении массовых феноменов важно понимать, как из неструктурированных коллективов возникают толпы. Нашему пониманию закономерностей, согласно которым формируются крупные толпы, могут поспособствовать математические модели, описывающие формирование и распад малых групп в пределах более крупных скоплений.
Джон Джеймс (James, 1951, 1953) изучал свободно формирующиеся группы больших размеров в самых разных социальных ситуациях и строил свои исследования на эмпирической основе. Джеймс писал о частотности возникновения групп разных размеров, спонтанно формирующихся на улицах, в магазинах, на детских площадках, в общественных местах и на рабочем месте. Он обнаружил, что размер группы колеблется от двух до семи, в среднем – около трех. Распределение размеров имеет форму буквы J: с ростом размера группы частота падает.
Отмечая, что большинство групп невелики и что в разных социальных ситуациях распределение размеров примерно одинаково, Джеймс приходит к следующим выводам.
1. Группы, сформированные при личном взаимодействии, тяготеют к минимальному возможному размеру (два) и минимальному количеству возможных отношений (одно).
2. Переменные восприятия, мышления и способности к перемещению влияют на размер группы сильнее, чем мотивация, пространство, социальная ситуация или возраст участников.
Кроме того, Джеймс указывает, что данные соответствуют отрицательному биномиальному распределению, хотя почти ничего не говорит о теоретическом значении этого факта.
Коулман и Джеймс (Coleman and James, 1961) сумели разработать математическую модель, точно описывающую наблюдения Джеймса. Это стохастическая модель, в которой размеры групп названы «состояниями» (в группе в состоянии 2 два участника). Они рассчитали вероятность перехода из состояния в состояние на основании следующих предположений:
1. Изолированные индивиды (состояние 1) имеют постоянную вероятность присоединиться к какой-то группе. Эта вероятность не зависит от размера группы, то есть предположение о «заразности» (что большие группы привлекательнее маленьких) явно опровергается. Как следствие предшествующих постулатов, общий приток к группе зависит исключительно от количества в системе изолированных индивидов.