Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер (2005)
-
Год:2005
-
Название:Магия чисел. Ментальные вычисления в уме и другие математические фокусы
-
Автор:
-
Жанр:
-
Язык:Русский
-
Перевел:Владислав Ласкавый
-
Издательство:Манн, Иванов и Фербер (МИФ)
-
Страниц:75
-
ISBN:978-5-00057-270-2
-
Рейтинг:
-
Ваша оценка:
Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер читать онлайн бесплатно полную версию книги
Существует еще одно ухищрение. Если разница модульных сумм отрицательна или равна 0, прибавьте к ней 9. Например:
КВАДРАТНЫЕ КОРНИ НА БУМАГЕ
С появлением карманных калькуляторов метод ручки и бумаги для вычисления квадратных корней практически ушел в небытие. Вы уже научились устно оценивать квадратные корни. Сейчас я покажу, как найти точное значение квадратного корня с помощью ручки и бумаги.
Помните, как в разделе приближенной оценки квадратных корней мы вычисляли квадратный корень из девятнадцати?
Взглянем на задачу еще раз, используя метод, который даст вам точное значение квадратного корня.
Я опишу этот метод как универсальный, который годится для любой ситуации, и проиллюстрирую примером, приведенным выше.
Шаг 1. Если количество цифр до десятичной запятой равно 1, 3, 5, 7 или любому другому нечетному числу, то первая цифра ответа (или частного) будет наибольшим числом, квадрат которого меньше первой цифры исходного числа. Если количество цифр до запятой равно 2, 4, 6 или любому другому четному числу, то первая цифра частного будет наибольшим числом, квадрат которого меньше первых двух цифр делимого. В данном случае 19 — двузначное число, поэтому первая цифра частного будет наибольшим числом, квадрат которой меньше 19. Это число 4.
Шаг 2. Вычитаем квадрат числа, найденного на шаге 1, из исходного числа и затем сносим еще две цифры. Так как 42 = 16, вычитаем 19–16 = 3. Сносим два нуля, получая 300 в качестве текущего остатка.
Шаг 3. Удваиваем существующее частное (игнорируя знаки после запятой) и оставляем после него пустое место. Здесь 4 х 2 = 8. Запишите 8_ х _ слева от текущего остатка (300 в данном случае).
Шаг 4. Следующая цифра частного будет наибольшим числом, которое может заполнить пропуски таким образом, чтобы результат умножения был меньше или равен текущему остатку. В данном случае это 3, поскольку 83 х 3 = 249, тогда как 84 х 4 = 336, что превышает остаток 300. Запишите это число в верхней строчке, где записываете ответ, над второй цифрой следующих двух чисел; в данном случае цифра 3 будет находиться над вторым нулем. Теперь имеем ответ в виде 4,3.
Шаг 5. Если вы хотите получить больше цифр в ответе, вычтите произведение из остатка (например, 300–249 = 51) и снесите следующие две цифры; в данном случае 51 превратится в 5100, что станет текущим остатком. Теперь повторите шаги 3 и 4.
Для получения третьей цифры квадратного корня удвойте частное, снова игнорируя все цифры после запятой: 43 х 2 = 86. Поместите 86_ х _ слева от 5100. Цифра 5 даст нам 865 х 5 = 4325, наибольшее произведение, которое меньше 5100.
Пятерка будет стоять в ответе сверху над следующими двумя числами, в данном случае над двумя нулями. Теперь ответ: 4,35. Для получения большего количества цифр после запятой повторите процедуру, как мы сделали в примере.
А вот пример нечетного количества цифр перед запятой.
Теперь вычислим квадратный корень из четырехзначного числа. В данном случае (как и с двузначными числами) учитываем первые две цифры примера для определения первой цифры квадратного корня.
Наконец, если число, из которого извлекается квадратный корень, имеет правильный (полный) квадрат, то узнать об этом можно, если в итоге получается нулевой остаток.
Например:
УМНОЖЕНИЕ НА БУМАГЕ
Для умножения с ручкой и бумагой я использую метод крестнакрест, который позволяет записать весь ответ целиком в одну строчку и нигде не фиксировать промежуточные результаты! Это одна из самых впечатляющих демонстраций магии чисел, когда в вашем распоряжении есть ручка и бумага. Многие вычислители из прошлого заработали себе репутацию «молниеносных» именно этим методом. Они получали два огромных числа и записывали ответ почти мгновенно. Методу крест-накрест лучше всего обучаться на примере.