Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)
-
Год:2014
-
Название:Наша математическая вселенная. В поисках фундаментальной природы реальности
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:Александр Сергеев
-
Издательство:Corpus (АСТ)
-
Страниц:244
-
ISBN:978-5-17-085475-2
-
Рейтинг:
-
Ваша оценка:
Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги
Помните, я назвал теорию инфляции благодатным даром? Когда начинает казаться, что она не может предсказать что-либо более радикальное, чем уже предсказано, ей это удаётся. Если вам было трудно переварить огромный мультиверс I уровня, попробуйте представить себе бесконечное множество таких мультиверсов, причём в некоторых могут действовать совершенно иные законы физики. Андрей Линде, Александр Виленкин, Алан Гут и их коллеги показали, что именно это обычно предсказывает теория инфляции. (А мы будем называть это мультиверсом II уровня.)
Много вселенных в одном пространстве
Как вообще физика может позволять такое безумие? Вспомните (рис. 5.8), что инфляция умудряется породить бесконечный объём внутри конечного. На рис. 6.3 показано, что нет причин, согласно которым инфляция не могла бы осуществить это в нескольких примыкающих друг к другу объёмах. В результате получилось бы несколько бесконечных областей (мультиверсов I уровня) — при условии, что инфляция вечна и никогда не заканчивается на границах между этими объёмами. Это означает, что если вы живёте в одном из мультиверсов I уровня, посещение соседнего невозможно: инфляция продолжает порождать разделяющее вас пространство быстрее, чем вы можете его преодолевать. Я представил, как разговариваю с детьми, расположившимися на заднем сиденье моей ракеты:
— Папа, мы уже приехали?
— Нам остался один световой год.
— Папа, мы уже приехали?
— Нам осталось два световых года.
Иными словами, хотя эти другие части мультиверса II уровня находятся в том же пространстве, что и мы, они более чем бесконечно далеки от нас в том смысле, что мы никогда их не достигнем, даже если будем вечно путешествовать со скоростью света. Напротив, сколь угодно отдалённых частей нашего мультиверса I уровня, в принципе, можно достичь, если у вас хватит терпения и если космологическое расширение замедляется.[26]
Рис. 6.3. Если вечная инфляция порождает три бесконечные области посредством механизма, изображённого на рис. 5.8, то путешествовать между ними невозможно, поскольку инфляция порождает пространство между вами и местом назначения быстрее, чем вы можете его преодолевать.
На рис. 6.3 я сделал упрощение, проигнорировав тот факт, что пространство расширяется. Вечно инфлирующие области я обозначил тонкими вертикальными полосками, разделяющими U-образные мультиверсы I уровня. В действительности они будут быстро расширяться и в конце концов инфляция в части пространства внутри них прекратится, породив дополнительные U-образные области. Так ещё интереснее: мультиверс II уровня оказывается древоподобной структурой (рис. 6.4). Любая инфлирующая область продолжает быстро расширяться, но инфляция рано или поздно в различных её частях заканчивается, порождая U-образные области, и каждая из них представляет собой бесконечный мультиверс I уровня. Это древо продолжает расти вечно, создавая бесконечное число таких U-образных областей, и все они вместе образуют мультиверс II уровня. Завершение инфляции превращает инфлирующую субстанцию внутри каждой области в частицы, которые затем собираются в атомы, звёзды и галактики. Алан Гут любит называть мультиверсы I уровня «карманными вселенными», поскольку они аккуратно заполняют небольшие участки «кроны» древа.
Рис. 6.5. Может ли пространство замёрзнуть? Рыба может думать, что вода — пустое пространство, поскольку это единственная известная ей среда. Но если умная рыба выведет физические законы, управляющие молекулами воды, она поймёт, что у этих уравнений есть три решения: «фазы» жидкой воды, которую она знает, а также пара и льда, которых она никогда не видела. Аналогичным образом то, что мы считаем пустым пространством, может быть средой с 10500 или большим числом фаз, из которых мы знакомы лишь с одной.
Многообразие





