Knigionlineru.com » Наука, Образование » Наша математическая вселенная. В поисках фундаментальной природы реальности

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)

Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Год:
    2014
  • Название:
    Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Автор:
  • Жанр:
  • Серия:
  • Язык:
    Русский
  • Перевел:
    Александр Сергеев
  • Издательство:
    Corpus (АСТ)
  • Страниц:
    244
  • ISBN:
    978-5-17-085475-2
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
Галилео Галилео галилевной заметил, что Галактика – это книга, напечатанная на языке алгебры. Макс Тегмарк предполагает, что наш физический мирок в некотором смысле и есть алгебра. Известный астроном, профессор Массачусетского технического института приглашёет читателей присоедениться к поискам основополагающей природы действительности и ведет за собой через нескончаемое пространство и времечко – от микрокосма молекулярных частиц к микрокосму Вселенной. Если же индивидуум, обладающий уменьем перевоплощаться и уподобляться чему угодно, сам прибудет в наше княжество, желая продемонстрировать нам свои творения, мы покоримся перед ним как перед чем-то священным, поразительным и приятным, но скажем, что такого индивидуума у нас в государстве не бытует и что не дозволено там таким становиться, да и отошлем его в иное государство, умастив ему замглавы благовониями и венчав шерстяной перевязью, а сами удовольствуемся, по умозаключениям пользы, менее суровым, хотя бы и более приятным прозаиком и творцом преданий, который подражал бы у нас методу выражения индивидуума порядочного.

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги

Вероятно, математическое открытие неевклидовых пространств полтора столетия назад казалось большинству людей не более чем абстракцией, не имеющей практического отношения к нашему физическому миру. Затем Эйнштейн выдвинул общую теорию относительности, которая, по сути, утверждала, что мы — муравьи. Теория Эйнштейна позволяет нашему трёхмерному пространству быть искривлённым без всякого скрытого четвёртого измерения, в котором оно искривлялось бы. Так что на вопрос, в пространстве какого типа мы живём, нельзя ответить, исходя из одной логики, как надеялись сторонники Евклида. Решить эту задачу можно, лишь выполнив измерения, например построив в космосе огромный треугольник (скажем, из лучей света) и проверив, равна ли сумма его углов 180°. В гл. 4 я расскажу, как мы с коллегами развлекались, проделывая это. Ответ оказался близок к 180° для треугольников размером с Вселенную, но значительно превосходящим 180°, если большую часть треугольника занимает нейтронная звезда или чёрная дыра. Так что форма нашего физического пространства сложнее, чем в трёх примерах на рис. 2.7.

Вернёмся к детскому вопросу о конечности пространства. Мы видим, что теория Эйнштейна позволяет пространству быть конечным далеко не таким глупым способом, как на рис. 2.6: оно может быть конечным за счёт искривлённости. Например, если наше трёхмерное пространство искривлено подобно поверхности четырёхмерной гиперсферы, то, будь у нас возможность достаточно далеко уйти по прямой линии, мы в конце концов вернулись бы домой с противоположной стороны. Мы не упали бы с края трёхмерного пространства, поскольку у него нет края, как нет края и у сферы, по которой ползёт муравей (рис. 2.7).

В действительности, Эйнштейн позволяет нашему трёхмерному пространству быть конечным, даже если оно не искривлено. Цилиндр на рис. 2.7 в математическом смысле плоский: если нарисовать треугольник на бумажном цилиндре, сумма его углов составит 180°. Чтобы убедиться в этом, вырежьте из цилиндра треугольник: он ровно ляжет на стол. Со сферой или гиперболоидом это не получится сделать без складок или разрывов бумаги. Но хотя цилиндр на рис. 2.7 кажется плоским для муравья, ползущего по небольшому участку, цилиндр замкнут на себя: муравей может вернуться домой, обойдя его вокруг по прямой линии. Математики называют подобные характеристики связности пространства его топологией. Они дали определение плоскому пространству, замкнутому на себя по всем измерениям, и назвали такое пространство тором. Двумерный тор имеет такую же топологию поверхности, как у баранки. Эйнштейн допускает, что физическое пространство, в котором мы живём, представляет собой трёхмерный тор и является в таком случае плоским и конечным. Или бесконечным.

Обе эти возможности прекрасно согласуются с лучшей имеющейся у нас теорией о пространстве — общей теорией относительности Эйнштейна. Но какое оно? В гл. 4 и 5 мы найдём свидетельство того, что пространство всё-таки бесконечно. Но поиск ответа на детский вопрос приводит нас к другой проблеме: чем в действительности является пространство? Хотя все мы сначала думаем о пространстве как о чём-то физическом, образующем ткань нашего материального мира, теперь мы видим, что математики говорят о пространствах как о математических сущностях. Для них изучение пространства — то же самое, что изучение геометрии, а геометрия — просто часть математики. Вполне можно считать, что пространство — это математический объект в том смысле, что все внутренне присущие ему свойства — такие как размерность, кривизна и топология — математические. Мы рассмотрим этот аргумент в гл. 10.

В этой главе мы, изучив своё положение в пространстве, обнаружили, что Вселенная гораздо больше, чем казалось нашим предкам. Чтобы по-настоящему понять, что происходит на огромных расстояниях, можно вести наблюдения с помощью телескопов. Однако определить своё место в пространстве недостаточно. Нам необходимо знать и своё место во времени.

Резюме

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий