Верховный алгоритм: как машинное обучение изменит наш мир - Педро Домингос (2015)
-
Год:2015
-
Название:Верховный алгоритм: как машинное обучение изменит наш мир
-
Автор:
-
Жанр:
-
Язык:Русский
-
Перевел:Василий Горохов
-
Издательство:Манн, Иванов и Фербер (МИФ)
-
Страниц:21
-
ISBN:978-5-00100-172-0
-
Рейтинг:
-
Ваша оценка:
Единым методикой вынудить компьютер что-нибудь создавать — от сложения 2-ух количеств до управления самолетом — было формирование.»
Верховный алгоритм: как машинное обучение изменит наш мир - Педро Домингос читать онлайн бесплатно полную версию книги
Благодаря большим данным и машинному обучению можно понять намного более сложные феномены, чем до появления этих факторов. В большинстве дисциплин ученые традиционно пользовались только очень скромными моделями, например линейной регрессией, где кривая, подобранная к данным, – всегда прямая линия. К сожалению (а может, и к счастью, потому что иначе жизнь была бы очень скучной – вообще говоря, никакой жизни бы и не было), большинство феноменов в мире нелинейны, и машинное обучение открывает перед нами огромный мир нелинейных моделей: это все равно что включить свет в комнате, которую до того освещала лишь Луна.
В биологии алгоритмы машинного обучения разбираются, где в молекуле ДНК расположены гены, какие фрагменты РНК вырезают при сплайсинге[12] перед синтезом белка, как белки принимают характерную для них форму и как заболевания влияют на экспрессию разных генов. Вместо того чтобы тестировать в лаборатории тысячи новых лекарств, обучающийся алгоритм спрогнозирует, будут ли они эффективны, и допустит до этапа тестирования только самые перспективные. Алгоритмы будут отсеивать молекулы, которые, скорее всего, вызовут неприятные побочные эффекты, например рак. Это позволит избежать дорогих ошибок, к примеру, когда лекарство запрещают только после начала испытаний на человеке.
Однако самый большой вызов – это собрать всю эту информацию в единое целое. Какие факторы усугубляют риск сердечных заболеваний и как они между собой взаимодействуют? Все, что было нужно Ньютону, – это три закона движения и один гравитации, однако одиночке открыть полную модель клетки, организма и общества не под силу. По мере роста объема знаний ученые все больше специализируются на какой-то области, но никто не способен собрать все части воедино, потому что элементов просто слишком много. Они сотрудничают друг с другом, но язык – очень медленное средство общения. Ученые пытаются быть в курсе других исследований, однако объем публикаций настолько велик, что они все больше и больше отстают, и зачастую повторить эксперимент проще, чем найти статью, в которой он описан. Машинное обучение и здесь приходит на помощь: оно просеивает литературу в поисках соответствующей информации, переводит специальный язык одной дисциплины на язык другой и даже находит связи, о которых ученые и не подозревали. Машинное обучение все больше напоминает гигантский хаб[13], через который методики моделирования, изобретенные в одной области, пробиваются в другие.
Если бы не изобрели компьютеры, наука застряла бы во второй половине ХХ столетия. Возможно, ученые заметили бы это не сразу и работали бы над все еще возможными небольшими успехами, но потолок прогресса был бы несравнимо ниже. Аналогично без машинного обучения многие науки в ближайшие десятилетия столкнулись бы с проблемой ослабевающей отдачи.
Чтобы увидеть будущее науки, загляните в лабораторию Манчестерского института биотехнологий, где трудится робот по имени Адам. Ему поручено определить, какие гены кодируют ферменты дрожжей. В распоряжении Адама есть модель метаболизма дрожжевой клетки и общие знания о белках и генах. Он выдвигает гипотезы, разрабатывает эксперименты для их проверки, сам проводит опыты, анализирует результаты и выдвигает новые гипотезы, пока не будет удовлетворен. Сегодня ученые все еще независимо проверяют выводы Адама, прежде чем ему поверить, но уже завтра проверкой этих гипотез займутся роботы.
Миллиард Клинтонов